Ultrafast Physics from molecules to nanostructures 07.Oct - 10.Oct 2019 Cod. Z26-19 Mod.: Face-to-face **Edition** 2019 **Activity type** Workshop **Date** 07.Oct - 10.Oct 2019 Location Miramar Palace Languages English **Academic Validity** 40 hours Web https://www.cecam.org/conferences_psik/ #### **Organising Committee** ### **Description** The impressive progress in ultrafast laser technology, ranging from the femtosecond to the attosecond timescale and from the THz to the XUV frequency range, is making possible to probe real-time electronic and nuclear dynamics in atoms, molecules and solids[1]. Fundamental insight can be gained into the primary photoinduced processes in systems with growing level of complexity[2]. The capability of following and steering ultrafast dynamics has tremendous impact in a wide range of applications, from materials science[3] to life sciences. Clearly, advances in theories and methods for modeling ultrafast processes inevitably require an intense exchange with the experimental community due to the complexity of the systems and of the measurements. In the last decade the effort in developing predictive and computationally feasible methods has virtually exploded. Ab initio approaches based on DFT and nonequilibrium Green's function (NEGF)[4] have recently made contact with timeresolved experiments in 2D systems and nanostructures. Other ab initio methods based on wavefunctions (e.g., ADCn, CASPTn) or reduced quantities (e.g., TDDFT, NEGF) for modeling ultrafast processes enable to access the electron-nuclear subfemtosecond dynamics in molecules. Furthermore, accurate real-time numerical methods have been put forward for strongly correlated model systems (e.g., TD- DMFT and DMRG). This workshop will gather world-leading experts in theory and experiments, enabling a cross-fertilization which will enable to advance the state of the art in ab-initio methods. In fact, the rapid development of experimental techniques has not been followed by a simultaneous integration with the ab-initio computational community. The result is a scarce availability of numerical tools for crucial systems of technological or fundamental interest, e.g., biomolecules, large nanostructures and materials with technological application. One of the key challenges is therefore to extend the range of application of material science and chemistry codes to the study of out-of-equilibrium properties. To this purpose, it is crucial to let experimental, theoretical and computational scientists meet and debate on crucial questions like: how to extend the accuracy of ab-Initio methods out-of-equilibrium? How to efficiently benefit from the advances in computation facilities to simulate the nonequilibrium dynamics of complex materials? How to translate laser-pulse features into boundary conditions and suitable approximations for the computational tools? Can we devise a series of tools and procedures to provide to the community? #### **Objectives** This workshop aims at being a turning point in ultrafast computational scienc e, settling down crucial and yet unexplored directions to progress. We will compare different theoretical formulations of experimental outcomes, discuss their range of applicability as well as their physical and numerical limitations. We will also discuss for the various approaches how to include the missing physics and whether this inclusion is numerically feasible. #### Course specific contributors # **Directed by** **Angel Rubio** UPV/EHU Angel Rubio is is the managing director of the Max Planck Institute for the Structure and Dynamics of Matter and the director of its theory department. He is a distinguished Research Scientist at the Flatiron institute's Center for Computational Quantum Physics distinguished as well as Professor of physics at the University of the Basque Country and the University of Hamburg. Rubio's research focuses on the modeling and theory of electronic and structural properties of condensed matter. He is working on developing novel theoretical tools, such as time-dependent functional theory for quantum electrodynamics and computational codes for the ab initio description and control of the dynamics of decoherence and dissipation in quantum many-body systems, and on characterizing new nonequilibrium states of matter. #### **Teachers** Marco Bernardi California Institute of Technology Marco received his Ph.D. in Materials Science from MIT, where he worked with Prof. Jeff Grossman on novel materials and physical processes for solar energy conversion. He was a postdoc in the Physics Department at UC Berkeley, working with Prof. Steve Louie and Prof. Jeff Neaton on excited electrons in materials. His group at Caltech focuses on computing the dynamics of electrons in materials, with applications to electronics, optoelectronics, energy, quantum technologies and ultrafast science. Marco received the NSF CAREER Award in 2018, the AFOSR Young Investigator Award in 2017, the Psi-K Volker Heine Young Investigator Award for electronic structure calculations in 2015, and the Intel Ph.D. Fellowship from Intel in 2013, among other awards. Jens Biegert ICREA.ICFO.- The Institute of Photonics Sciences Irene Burghardt Goethe University #### Andrea Cavalleri $\mbox{\it Max}$ Planck Institute for the Structure and Dynamics of Matter #### **Hannes Huebener** Max Planck Institute for the Structure and Dyamics of Matter **Aaron Kelly** Dalhousie University **Alfred Leitenstorfer** University of Konstanz #### Fernando Martín García Universidad Autónoma de Madrid, IMDEA Nanociencia & DIPC **Enrico Perfetto** Universita di Roma Tor Vergata **Thomas Pfeifer** Max-Planck Institute for Nuclear Physics **Walter Pfeiffer** UB **Akshay Rao** University of Cambridge **Erling Thyrhaug** Technical University of Munich **Marc Vrakking** Max Born Institute Davide Sangalli CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit) #### **Christian Schaefer** $\mbox{\it Max}$ Planck Institute for the Structure and Dynamics of Matter #### **Martin Schultze** Technical University Graz.Institue of Experimental Physics #### Sangeeta Sharma Max Born Institute # **Emma Springate** # Gianluca Stefanucci Universita di Roma Tor Vergata # **Registration fees** | REGISTRATION | UNTIL 06-10-2019 | |--------------|------------------| | REGISTRATION | 0 EUR | # **Place** # **Miramar Palace** $P^{\underline{o}}$ de Miraconcha n $^{\underline{o}}$ 48. Donostia / San Sebastián Gipuzkoa